Search results for " fulvic acid"
showing 6 items of 6 documents
Influence of land use on the characteristics of humic substances in some tropical soils of Nigeria
2005
Summary In highly weathered tropical conditions, soil organic matter is important for soil quality and productivity. We evaluated the effects of deforestation and subsequent arable cropping on the qualitative and quantitative transformation of the humic pool of the soil at three locations in Nigeria. Cultivation reduced the humic pool in the order: acetone-soluble hydrophobic fraction (HE) > humic acid (HA) > humin (HU) > fulvic acid (FA), but not to the same degree at all three sites. The C and N contents, as well as the C/N ratios of humic extracts, were large and not substantially influenced by land use. The δ13C values of the humic extracts were invariably more negative in forested soil…
Modelling of natural and synthetic polyelectrolyte interactions in natural waters.
2006
In this paper SIT and Pitzer models are used for the first time to describe the interactions of natural and synthetic polyelectrolytes in natural waters. Measurements were made potentiometrically at 25 °C in single electrolyte media, such as Et4NI and NaCl (for fulvic acid 0.1 < I /mol L− 1 < 0.75), and in a multi-component medium simulating the composition of natural waters at a wide range of salinities (for fulvic and alginic acids: 5 < S < 45) with particular reference to sea water [Synthetic Sea Water for Equilibrium studies, SSWE]. In order to simplify calculations, SSWE was considered to be a “single salt” BA, with cation B and anion A representing all the major cations (Na+, K+, Mg2+…
Modelling of natural synthetic polyelectrolyte interactions in natural waters by using SIT, Pitzer and Ion Pairing approaches
2006
Abstract In this paper SIT and Pitzer models are used for the first time to describe the interactions of natural and synthetic polyelectrolytes in natural waters. Measurements were made potentiometrically at 25 °C in single electrolyte media, such as Et 4 NI and NaCl (for fulvic acid 0.1 − 1 S single salt ” BA, with cation B and anion A representing all the major cations (Na + , K + , Mg 2+ , Ca 2+ ) and anions (Cl − , SO 4 2− ) in natural sea water, respectively. The ion pair formation model was also applied to fulvate and alginate in artificial sea water by examining the interaction of polyanions with the single sea water cation. Results were compared with those obtained from previous sp…
Sequestration of biogenic amines by alginic and fulvic acids.
2006
The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4diaminobutane (or spermidine), diethylenetriamine; tetramine: N.N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-1). For all the systems, the formation of…
Uranium(VI) sequestration by polyacrylic and fulvic acids in aqueous solution
2011
Stability data on the formation of dioxouranium(VI) species with polyacrylic (PAA) and fulvic acids (FA) are reported with the aim to define quantitatively the sequestering capacity of these high molecular weight synthetic and naturally occurring ligands toward uranium(VI), in aqueous solution. Investigations were carried out at t = 25 °C in NaCl medium at different ionic strengths and in absence of supporting electrolyte for uranyl–fulvate (\( {{\text{UO}}_{2}}^{2+} \)–FA) and uranyl–polyacrylate (\( {{\text{UO}}_{ 2}}^{ 2+ } \)–PAA, PAA MW 2 kDa) systems, respectively. The experimental data are consistent with the following speciation models for the two systems investigated: (i) UO2(FA1),…
EXTRACTION OF BIOLOGICALLY ACTIVE COMPONENTS FROM FRESHWATER SAPROPEL
2019
Sapropel has been used for different purposes - in agriculture as fertilizer, in construction as building material, in cosmetic products, in balneology also in medicine and pharmaceuticals as bioactive component. Previously sapropel has been commonly used in raw form and there is no general accepted method or standard method for obtaining sapropel extract. However, most extraction methods follow the same path. Currently, there are few extraction methods using several extractants for obtaining bioactive components from raw sapropel. The most commonly used extractant is alkaline solution. When sapropel is subjected to alkaline environment, the humic and fulvic acids, together with some lipids…